AN E.S.R. STUDY OF SPIN-TRAPPING BY AZODICARBOXYLATES TO GIVE HYDRAZYL RADICALS Brian P. Roberts^{*} and Jeremy N. Winter

Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H OAJ

Addition of photochemically- or thermally-generated radicals $(X \cdot)$ to dialkyl azodicarboxylates gives hydrazyl radicals $[RCO_2(X)NNCO_2R]$ which are readily detected by e.s.r. spectroscopy.

In 1972 Stilbs <u>et al.</u>¹ proposed that diazenyl radicals of the type $\binom{2}{2}$ were responsible for e.s.r. spectra observed during photolysis of dialkyl azodicarboxylates $\binom{1}{2}$ in hydrocarbon solution.

$$\begin{array}{c} \operatorname{RO}_{2}\operatorname{CN}=\operatorname{NCO}_{2}\operatorname{R} & \xrightarrow{\underline{h}\nu} & \operatorname{RO}_{2}\operatorname{CN}=\operatorname{N} \cdot + \cdot \operatorname{CO}_{2}\operatorname{R} & (i) \\ (1) & (2) & (2) \end{array}$$

In 1973 Marnett <u>et al.</u>² concluded that these spectra were due to hydrazyl radicals of the type $(\underline{3})$, formed by addition of solvent-derived radicals to $(\underline{1})$. Product studies certainly indicate that reaction (ii) must proceed readily.³

$$X + RO_2 CN = NCO_2 R \longrightarrow RO_2 C(X)N^2 - NCO_2 R \qquad (11)$$
(3)

Later that year, Malatesta and Ingold⁴ showed that the signals were in fact due to hydrazoxyl radicals $RO_2C(X)N-N(\dot{O})CO_2R$ (4), and e.s.r. spectra of authentic hydrazyl radicals resulting from homolytic addition to (1) have not been observed.

We now report that a variety of hydrazyl radicals can be generated by reaction (ii) and that the e.s.r. spectra of $(\underline{3})$ may be readily detected. The azodicarboxylates were commercial materials, used without further purification, and the samples were degassed and sealed under vacuum in the normal way.⁵ Photolysis⁶ of a <u>ca</u>. 0.2 <u>M</u> solution of (1; R = Bu^t) in cyclopropane/t-butylbenzene (1:1) in the absence of oxygen at 220 K gave rise to overlapping e.s.r. signals which we ascribe to the hydrazyls (5) and (6), formed as shown in equations (iii) - (vi). If oxygen was not excluded, variable concentrations of hydrazoxyl radicals were also detected.

$$\operatorname{Bu}^{t}O_{2}\operatorname{CN=NCO_{2}Bu}^{t} \xrightarrow{\underline{h}\nu} 2\operatorname{Bu}^{t}O\operatorname{CO} + N_{2}$$
 (iii)

$$Bu^{t}oco \xrightarrow{\Delta_{iv}} Bu^{t} + co_{2}$$
 (iv)

$$Bu^{t}o\dot{c}o + Bu^{t}o_{2}CN=NCO_{2}Bu^{t} \xrightarrow{\underline{\kappa}_{v}} (Bu^{t}O_{2}C)_{2}N-\dot{N}CO_{2}Bu^{t} (v)$$
(5)

$$Bu^{t} + Bu^{t}O_{2}CN = NCO_{2}Bu^{t} - Bu^{t}O_{2}C(Bu^{t})N - \dot{N}CO_{2}Bu^{t} \quad (vi)$$
(6)

Addition of $\operatorname{Bu}^{t}N=\operatorname{NBu}^{t}$ (a photochemical source of Bu^{t} .) brought about a very large increase in the relative intensity of the signal assigned to (6). Similar results were obtained from experiments in which (1; R = Bu^t) was photolysed in isobutane solvent with di-t-butyl peroxide as an indirect source of t-butyl radicals [equation (vii); X = Bu^t], and it appears that the quantum yield of radicals from direct photolysis of (1) is small.

Strong spectra of (5) and (6) were observed during photolysis of a solution containing (1; $R = Bu^{t}$), $Bu^{t}OCHO$ and $Bu^{t}OOBu^{t}$, the latter two reagents providing a better source of $Bu^{t}OCO$ [equation (vii), $X = Bu^{t}OC(0)$] than the azodicarboxylate. Under otherwise identical conditions, the concentration ratio [(5)]:[(6)] increased with decreasing temperature and with increasing concentration of (1; $R = Bu^{t}$), as expected on the basis of equations (iv) - (vi). We did not attempt to determine⁷ \underline{k}_{v} relative to \underline{k}_{iv} because the hydrazyl (6) was much longerlived (half-life <u>ca</u>. 5 s at 250 K) than (5), and because radical addition to <u>cis</u>- and <u>trans</u>-(1) probably takes place at different rates.⁸

A variety of other radical addenda were generated photochemically, from azoalkanes or from di-t-butyl peroxide <u>via</u> reaction (vii), in the presence of $(1; R = Et \text{ or } Bu^t)$ and the spectroscopic parameters of the resulting hydrazyl radicals (3) are gathered in the Table. The spectrum of $(3; R = Et, X = Bu^t)$ is shown in the Figure.¹⁰

R	(3) x	Source of X· a	т/к	£	<u>a</u> (N)	Hyperfin <u>a(</u> N')	e Splittings <mark>b</mark> /G Others
But	Me	<u>A</u> , <u>B</u>	209	2.0040	11.6	5.8	7.1 (3H)
\mathtt{Bu}^{t}	Pr ⁱ	<u>c</u>	283	2.0040	14.0	5.8	2.3 (1H)
${\tt Bu}^{t}$	<u>cyclo</u> -C6 ^H 11	<u>c</u>	3 4 0	2.0040	15.8	5.9	2.7 (1H)
\mathtt{Bu}^{t}	<u>cyclo</u> -C3H5	<u>c</u>	260	2.0040	13.4	5.8	3.5 (1H), 0.3 (1H)
\mathtt{Bu}^{t}	But	<u>A</u> , <u>C</u>	200	2.0040	12.6	7.8	3.0 (¹³ c _β)
\mathtt{Bu}^{t}	Bu ^t OC(0)	<u>A</u> , <u>C</u>	206	2.0041	11.8	5.0	
But	Ph ₃ Si	<u>c</u>	260	2.0041	14.5	3.4	
\mathtt{Bu}^{t}	Et ₃ Si	<u>c</u>	263	2.0041	14.4	3.7	
$\mathtt{Bu}^{\mathtt{t}}$	Ph ₃ Ge	<u>c</u>	255	2.0042	11.6	5.2	
$\mathtt{Bu}^{\mathtt{t}}$	Ph ₃ Sn	<u>c</u>	254	2.0039	8.0	6.9	
${\tt Bu}^{t}$	Bu ⁿ ₃ Sn	<u>D</u>	239	2.0044	8.5	6.2	17.2(¹¹⁷ Sn),18.0(¹¹⁹ Sn)
Et	Pr ⁱ	<u>c</u>	274	2.0041	14.1	5.6	2.2 (1H), 0.5 (4H)
Et	$\operatorname{Bu}^{\operatorname{t}}$	<u>A</u> , <u>C</u>	273	2.0041	12.3	7.6	0.6 (4H)
Et	$Bu^{t}OC(0)$	<u>C</u>	262	2.0041	11.8	5.0	1.0 (2H), 0.4 (2H)
	(8) X						
PhC(0)		A	215	2.0047	10.1	5.2	
	Bu ^t	<u>A</u> , <u>C</u>	235	2.0044	10.0	8.3	
	Et ₃ Si	<u>c</u>	28 4	2.0040	14.4	3.7	

E.s.r. Spectroscopic Parameters for Hydrazyl Radicals (3) and (8) in Hydrocarbon Solvents

<u>a</u> <u>A</u> = photolysis of XN=NX; <u>B</u> = photolysis of MeC(0)OOC(0)Me; <u>C</u> = reaction (vii); <u>D</u> = $Bu^{t}0 + Bu_{6}^{n}Sn_{2}$. Radical chain addition of $R_{5}MH$ to (<u>1</u>) was rapid for M = Ge or Sn; the hydrazine produced is a probable additional source of (<u>3</u>). <u>b</u> Splittings did not vary significantly with temperature.

The hydrazyl (3; $R = Bu^{t}$, $X = \underline{cyclo} - C_{6}H_{11}$) was detected during photolytic (from $Bu^{t}OOBu^{t}$) or thermolytic (from $Bu^{t}ON=NOBu^{t}$) generation of $Bu^{t}O\cdot$ in the presence of cyclohexane (solvent) and (1; $R = Bu^{t}$) at 340 K. No signals were detected when (1) alone was heated in cyclohexane at 340 K.

¹⁵N-Labelling studies would be required for the unequivocal assignment of the nitrogen splittings to N¹ and N² in (3), however some support for assignment of the larger splitting to N¹ may be adduced from the spectra of (7; M = Si, Ge, Sn). The relative importance of (7a), and hence the value of $\underline{a}(N^1)/\underline{a}(N^2)$, should increase with the π -acceptor character of M in the order Sn \leq Ge \leq Si (compare ref. 11).

$$Bu^{t}O_{2}C(Ph_{3}M)\ddot{N}^{2}-\dot{N}^{1}CO_{2}Bu^{t} \longrightarrow Bu^{t}O_{2}C(Ph_{3}M)\ddot{N}^{2}-\ddot{N}^{1}CO_{2}Bu^{t}$$

$$(7a) \qquad (7b)$$

Addition of photochemically or thermally generated radicals to PhC(0)N=NC(0)Ph yields hydrazyls PhC(0)N(X)NC(0)Ph (8) which are, in general, longer lived than (3) under similar conditions. Examples are included in the Table.

References and notes

- 1. P. Stilbs, G. Ahlgren, and B. Akermark, <u>Tetrahedron Letters</u>, 1972, 2387.
- 2. L.H. Marnett, P. Smith, and N.A. Porter, <u>Tetrahedron Letters</u>, 1973, 1081.
- G. Koga, N. Koga, and J.-P. Anselme in "The Chemistry of the Hydrazo, Azo, and Azoxy Groups", ed. S. Patai, John Wiley, 1975, ch. 19.
- 4. V. Malatesta and K.U. Ingold, <u>Tetrahedron Letters</u>, 1973, 3311.
- P.M. Blum and B.P. Roberts, <u>J.C.S. Perkin II</u>, 1978, 1313; samples were maintained under nitrogen, but not sealed, in experiments involving thermal generation of radicals from Bu^tON=NOBu^t.
- With light from a Philips CS 500 mercury lamp, using silica optics, filtered through 8 cm of 0.04 <u>M</u> NiSO_A in distilled water.
- 7. M.J. Perkins and B.P. Roberts, J.C.S. Perkin II, 1974, 297.
- 8. The azodicarboxylates normally exist in the <u>trans</u>-configuration about the N=N bond, although photolysis would bring about partial conversion to the less stable <u>cis</u>-isomer.⁹
- E. Koerner von Gustorf, D.V. White, B. Kim, D. Hess, and J. Leitich, <u>J. Org. Chem</u>., 1970, <u>35</u>, 1155.
- 10. Restriction of rotation about the N-N or N-C bonds could give rise to conformational isomers, but only one spectrum was detected for each adduct. The hydrazyl Me₂CC(0)N(H)NCO [<u>a(N)</u> 8.8, <u>a(N')</u> 4.9, <u>a(1H)</u> 7.4 G, <u>g</u> 2.0049 at 258 K], generated by H-abstraction from the parent hydrazine, must be non-linear at N' and have <u>cis</u>-carbonyl groups.
- 11. R. West and B. Bichlmeir, <u>J. Amer. Chem. Soc</u>., 1973, <u>95</u>, 7897.

(Received in UK 6 July 1979)